Distant Domain Transfer Learning

Ben Tan", Yu Zhang", Sinno Jialin Pan™,

Qiang Yang"

“Hong Kong University of Science and Technology, Hong Kong
“*Nanyang Technological University, Singapore
{btan, zhangyu, gvang}@cse.ust .hk, sinnopan@ntu.edu.sg

Abstract

In this paper, we study a novel transfer learning problem
termed Distant Domain Transfer Learning (DDTL). Different
from existing transfer learning problems which assume that
there is a close relation between the source domain and the
target domain, in the DDTL problem, the target domain can
be totally different from the source domain. For example, the
source domain classifies face images but the target domain
distinguishes plane images. Inspired by the cognitive process
of human where two seemingly unrelated concepts can be
connected by learning intermediate concepts gradually, we
propose a Selective Learning Algorithm (SLA) to solve the
DDTL problem with supervised autoencoder or supervised
convolutional autoencoder as a base model for handling dif-
ferent types of inputs. Intuitively, the SLA algorithm selects
usefully unlabeled data gradually from intermediate domains
as a bridge to break the large distribution gap for transferring
knowledge between two distant domains. Empirical studies on
image classification problems demonstrate the effectiveness
of the proposed algorithm, and on some tasks the improve-
ment in terms of the classification accuracy is up to 17% over
“non-transfer” methods.

Introduction

Transfer Learning, which borrows knowledge from a source
domain to enhance the learning ability in a target domain,
has received much attention recently and has been demon-
strated to be effective in many applications. An essential
requirement for successful knowledge transfer is that the
source domain and the target domain should be closely relat-
ed. This relation can be in the form of related instances,
features or models, and measured by the KL-divergence
or A-distnace (Blitzer et al. 2008). For two distant do-
mains where no direct relation can be found, transferring
knowledge between them forcibly will not work. In the
worst case, it could lead to even worse performance than
‘non-transfer’ algorithms in the target domain, which is
the ‘negative transfer’ phenomena (Rosenstein et al. 2005;
Pan and Yang 2010). For example, online photo sharing com-
munities, such as Flickr and Qzone', generate vast amount
of images as well as their tags. However, due to the diverse

Copyright (© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
"http://gzone.qq.com

\ : Classification Accuracy of Tiger

\
kK . 0.61
“\ . ]

ISR

Supervised Leanring Transfer Learning

3 Classification Accuracy of Airplane

i 0.95
i ‘ “[ask 2

—

Supervised Leanring Transfer Leamning SLA

Tags

Number of labeld images

Figure 1: The tag distribution of the uploaded images at Qzone. In
the first task, we transfer knowledge between cat and tiger images.
A transfer learning algorithm achieves much better performance
than some supervised learning algorithm. In the second task, we
transfer knowledge between face and airplane images. The transfer
learning algorithm fails as it achieves worse performance than the
supervised learning algorithm. When applying our proposed SLA
algorithm, however, we find that our model achieves much better
performance.

interests of users, the tag distribution is often long-tailed,
which can be verified by our analysis in Figure 1 on the tag
distribution of the uploaded images at Qzone from January
to April in 2016. For the tags in the head part, we can build
accurate learners as there are plenty of labeled data but in
the tail part, due to the scarce labeled data, the learner for
each tag usually has no satisfactory performance. In this case,
we can adopt transfer learning algorithms to build accurate
classifiers for tags in the tail part by reusing knowledge in the
head part. When the tag in the tail part is related to that in the
head part, this strategy usually works very well. For example,
as shown in Figure 1, we can build an accurate tiger classifier
by transferring knowledge from cat images when we have few
labeled tiger images, where the performance improvement is
as large as 24% compared to some supervised learning algo-
rithm learned from labeled tiger images only. However, if the
two tags (e.g., face and airplane images) are totally unrelated
from our perspective, existing transfer learning algorithms
such as (Patel et al. 2015) fail as shown in Figure 1. One
reason for the failure of existing transfer learning algorithms
is that the two domains, face and airplane, do not share any
common characteristic in shape or other aspects, and hence



they are conceptually distant, which violates the assumption
of existing transfer learning works that the source domain
and the target domain are closely related.

In this paper, we focus on transferring knowledge between
two distant domains, which is referred to Distant Domain
Transfer Learning (DDTL). The DDTL problem is critical
as solving it can largely expand the application scope of
transfer learning and help reuse as much previous knowledge
as possible. Nonetheless, this is a difficult problem as the
distribution gap between the source domain and the target do-
main is large. The motivation behind our solution to solve the
DDTL problem is inspired by human’s ‘transitivity’ learning
and inference ability (Bryant and Trabasso 1971). That is,
people transfer knowledge between two seemingly unrelated
concepts via one or more intermediate concepts as a bridge.

Along this line, there are several works aiming to solve
the DDTL problem. For instance, Tan et al. (2015) introduce
annotated images to bridge the knowledge transfer between
text data in the source domain and image data in the target
domain, and Xie et al. (2016) predict the poverty based on
the daytime satellite imagery by transferring knowledge from
an object classification task with the help of some nighttime
light intensity information as an intermediate bridge. Those
studies assume that there is only one intermediate domain
and that all the data in the intermediate domain are helpful.
However, in some cases the distant domains can only be re-
lated via multiple intermediate domains. Exploiting only one
intermediate domain is not enough to help transfer knowl-
edge across long-distant domains. Moreover, given multiple
intermediate domains, it is highly possible that only a sub-
set of data from each intermediate domain is useful for the
target domain, and hence we need an automatic selection
mechanism to determine the subsets.

In this paper, to solve the DDTL problem in a better way,
we aim to transfer knowledge between distant domains by
gradually selecting multiple subsets of instances from a mix-
ture of intermediate domains as a bridge. We use the recon-
struction error as a measure of distance between two domains.
That is, if the data reconstruction error on some data points
in the source domain is small based on a model trained on
the target domain, then we consider that these data points in
the source domain are helpful for the target domain. Based
on this measure, we propose a Selective Learning Algorithm
(SLA) for the DDTL problem, which simultaneously selects
useful instances from the source and intermediate domains,
learns high-level representations for selected data, and trains
a classifier for the target domain. The learning process of
SLA is an iterative procedure that selectively adds new data
points from intermediate domains and removes unhelpful
data in the source domain to revise the source-specific model
changing towards a target-specific model step by step until
some stopping criterion is satisfied.

The contributions of this paper are three-fold. Firstly, to
our best knowledge, this is the first work that studies the
DDTL problem by using a mixture of intermediate domains.
Secondly, we propose an SLA algorithm for DDTL. Third-
ly, we conduct extensive experiments on several real-world
datasets to demonstrate the effectiveness of the proposed
algorithm.

Related Work

Typical transfer learning algorithms include instance weight-
ing approaches (Dai et al. 2007) which select relevant data
from the source domain to help the learning in the target
domain, feature mapping approaches (Pan et al. 2011) which
transform the data in both source and target domains into a
common feature space where data from the two domains fol-
low similar distributions, and model adaptation approach (Ay-
tar and Zisserman 2011) which adapt the model trained in
the source domain to the target domain. However, these ap-
proaches cannot handle the DDTL problem as they assume
that the source domain and the target domain are conceptually
close. Recent studies (Yosinski et al. 2014; Oquab et al. 2014;
Long et al. 2015) reveal that deep neural networks can learn
transferable features for a target domain from a source do-
main but they still assume that the target domain is closely
related to the source domain.

The transitive transfer learning (TTL) (Tan et al. 2015;
Xie et al. 2016) also learns from the target domain with the
help of a source domain and an intermediate domain. In TTL,
there is only one intermediate domain, which is selected by
users manually, and all intermediate domain data are used.
Different from TTL, our work automatically selects subsets
from a mixture of multiple intermediate domains as a bridge
across the source domain and the target domain. Transfer
Learning with Multiple Source Domains (TLMS) (Mansour,
Mohri, and Rostamizadeh 2009; Tan et al. 2013) leverages
multiple source domains to help learning in the target domain,
and aims to combine knowledge simultaneously transferred
from all the source domains. The different between TLMS
and our work is two-fold. First, all the source domains in
TLMS have sufficient labeled data. Second, all the source
domains in TLMS are close to the target domain.

Self-Taught Learning (STL) (Raina et al. 2007) aims to
build a target classifier with limited target-domain labeled
data by utilizing a large amount of unlabeled data from differ-
ent domains to learn a universal feature representation. The
difference between STL and our work is two-fold. First, there
is no a so-called source domain in STL. Second, STL aims
to use all the unlabeled data from different domains to help
learning in the target domain while our work aims to identify
useful subsets of instances from the intermediate domains to
bridge the source domain and the target domain.

Semi-supervised autoencoder (SSA) (Weston, Ratle, and
Collobert 2008; Socher et al. 2011) also aims to minimize
both the reconstruction error and the training loss while learn-
ing a feature representation. However, our work is different
from SSA in three-fold. First, in SSA, both unlabeled and
labeled data are from the same domain, while in our work,
labeled data are from either the source domain or the target
domain and unlabeled data are from a mixture of interme-
diate domains, whose distributions can be very different to
each other. Second, SSA uses all the labeled and unlabeled
data for learning, while our work selectively chooses some
unlabeled data from the intermediate domains and removes
some labeled data from the source domain for assisting the
learning in the target domain. Third, SSA does not have con-
volutional layer(s), while our work uses convolutional filters
if the input is a matrix or tensor.



Problem Definition

We denote by S = {(z},ys), -, (5, y5%)} the source
domain labeled data of size ng, which is assumed to be suf-
ficient enough to train an accurate classifier for the source
domain, and by T = {(z},y}), -, (77, y}3")} the tar-
get domain labeled data of size ny, which is assumed to be
too insufficient to learn an accurate classifier for the target
domain. Moreover, we denote by Z = {z},--- 7'} the
mixture of unlabeled data of multiple intermediate domains,
where n; is assumed to be large enough. In this work, a
domain corresponds to a concept or class for a specific clas-
sification problem, such as face or airplane recognition from
images. Without loss of generality, we suppose the classifica-
tion problems in the source domain and the target domain are
both binary. All data points are supposed to lie in the same
feature space. Let ps(x), ps(y|x), ps(x, y) be the marginal,
conditional and joint distributions of the source domain data,
respectively, pr(x), pr(y|x), pr(x,y) be the parallel def-
initions for the target domain, and p;(x) be the marginal
distribution for the intermediate domains. In a DDTL prob-
lem, we have

pr(x) # ps(x), pr(x) # pr(x), and pr(y|x) # ps(y|z).

The goal of DDTL is to exploit the unlabeled data in the
intermediate domains to build a bridge between the source
and target domains, which are originally distant to each oth-
er, and train an accurate classifier for the target domain by
transferring supervised knowledge from the source domain
with the help of the bridge. Note that not all the data in the
intermediate domains are supposed to be similar to the source
domain data, and some of them may be quite different. There-
fore, simply using all the intermediate data to build the bridge
may fail to work.

The Selective Learning Algorithm

In this section, we present the proposed SLA.

Auto-Encoders and Its Variant

As a basis component in our proposed method to solve the
DDTL problem is the autoencoder (Bengio 2009) and its vari-
ant, we first review them. An autoencoder is an unsupervised
feed-forward neural network with an input layer, one or more
hidden layers, and an output layer. It usually includes two
processes: encoding and decoding. Given an input « € RY,
an autoencoder first encodes it through an encoding function
fe(+) to map it to a hidden representation, and then decodes
it through a decoding function f4(-) to reconstruct x. The
process of the autoencoder can be summarized as

encoding : h = f.(x), and decoding : & = f4(h),

where & is the reconstructed input to approximate x. The
learning of the pair of encoding and decoding functions, f.(-)
and f,4(+), is done by minimizing the reconstruction error
over all training data, i.e., ]rcmfn S @ — i3

esJd

After the pair of encoding and decoding functions are
learned, the output of encoding function of an input , i.e.,
h = f.(x), is considered as a higher-level and robust repre-
sentation for x. Note that an autoencoder takes a vector as

the input. When an input instance represented by a matrix or
tensor, such as images, is presented to an autoencoder, the
spatial information of the instance may be discarded. In this
case, a convolutional autoencoder is more desired, and it is a
variant of the autoencoder by adding one or more convolution-
al layers to capture inputs, and one or more correspondingly
deconvolutional layers to generate outputs.

Instance Selection via Reconstruction Error

A motivation behind our proposed method is that in an ideal
case, if the data from the source domain are similar and useful
for the target domain, then one should be able to find a pair of
encoding and decoding functions such that the reconstruction
errors on the source domain data and the target domain data
are both small. In practice, as the source domain and the target
domain are distant, there may be only a subset of the source
domain data is useful for the target domain. The situation
is similar in the intermediate domains. Therefore, to select
useful instances from the intermediate domains, and remove
irrelevant instances from the source domain for the target
domain, we propose to learn a pair of encoding and decoding
functions by minimizing reconstruction errors on the selected
instances in the source and intermediate domains, and all the
instances in the target domain simultaneously. The objective
function to be minimized is formulated as follows:

nr

1<, . 1 . .
Fi(for farvs,0) == S ohl|@s—ab 3+ S obll@) — b
nsi3 N4

U™ i
+EZ||:UT_$TH§+R('US"UI)7 M
=1

where &%, &% and &% are reconstructions of x%, % and
x’ based on the autoencoder, vg = (v, -+, 0E)T
(v}, - 0P T, and v, v} € {0, 1} are selection indicators
for the i-th instance in the source domain and the j-th instance
in the intermediate domains, respectively. When the value
is 1, the corresponding instance is selected and otherwise
unselected. The last term in the objective, R(vg, vr), is a
regularization term on vg and v to avoid a trivial solution
by setting all values of vg and vt to be zero. In this paper,
we define R(vg, vr) as

ns nr

R I PR VA

’US,’UT) —7? ’Usfni 'UI.
55 i

Minimizing this term is equivalent to encouraging to select
many instances as possible from the source and intermediate
domains. Two regularization parameters, Ag and Ay, control
the importance of this regularization term. Note that more
useful instances are selected, more robust hidden representa-
tions can be learned through the autoencoder.

’vI:

Incorporation of Side Information

By solving the minimization problem (1), one can select use-
ful instances from the source and intermediate domains for
the target domain through vg and vy, and learn high-level
hidden representations for data in different domains through
the encoding function, i.e., h = f.(x), simultaneously. How-
ever, the learning process is in an unsupervised manner. As
a result, the learned hidden representations may not be rele-
vant to the classification problem in the target domain. This



motivates us to incorporate side information into the learn-
ing of the hidden representations for different domains. For
the source and target domains, labeled data can be used as
the side information, while for the intermediate domains,
there is no label information. In this work, we consider the
predictions on the intermediate domains as the side informa-
tion, and use the confidence on the predictions to guide the
learning of the hidden representations. To be specific, we
propose to incorporate the side information into learning by
minimizing the following function:

Tafes forfi) = - S vty SuBE)+ - D Ll folhi)
i=1 i=1

1 <L .
o2 vig(fe(h)), @)
=1

where f.(-) is a classification function to output classifica-
tion probabilities, and g(+) is entropy function defined as
g(z)=—zlnz—(1—2)In(1 — 2) for 0 < z < 1, which is
used to select instances of high prediction confidence in the
intermediate domains.

Overall Objective Function

By combining the two objectives in Egs. (1) and (2), we
obtain the final objective function for DDTL as follows:

Iélinj =7 + D, s.t. vg,v} € {0,1}, 3)

where v = {vg,vr}, and © denotes all parameters of the
functions f.(-), fe(+), and fq(-).

To solve problem (3), we use the block coordinate dece-
dent (BCD) method, where in each iteration, variables in
each block are optimized sequentially while keeping other
variables fixed. In problem (3), there are two blocks of vari-
ables: ® and v. When the variables in v are fixed, we can
update ® using the Back Propagation (BP) algorithm where
the gradients can be computed easily. Alternatingly, when the
variables in © are fixed, we can obtain an analytical solution
for v as follows,

, L if L(y, fo(fe(xs))) + (|25 — 263 < As
vg = (€]
0 otherwise

if &7 — 73 + g(fe(fe(]))) < A1

—_

&)

<
S
I

0 otherwise

Based on Eq. (4), we can see that for the data in the source
domain, only those with low reconstruction errors and low
training losses will be selected during the optimization pro-
cedure. Similarly, based on Eq. (5), it can be found that for
the data in the intermediate domains, only those with low
reconstruction errors and high prediction confidence will be
selected.

An intuitive explanation of this learning strategy is two-
fold: 1) When updating v with a fixed ©, “useless” data in
the source domain will be removed, and those intermediate
data that can bridge the source and target domains will be
selected for training; 2) When updating ® with fixed v, the
model is trained only on the selected “useful” data samples.

Deconvolution
and unpooling

Sample Convolution and
Selection

Fully connected

pooling layers autoencoder

(optional) layers layers(optinal)
/ II-
selected E = D
ntermediate reconstructed
data
|
I

target data

preditive model on
the labeled data

Figure 2: The deep architecture for SAN/SCAN models.

The overall algorithm for solving problem (3) is summarized
in Algorithm 1.

The deep learning architecture corresponding to problem
(3) is illustrated in Figure 2. From Figure 2, we note that
except for the instance selection component v, the rest of the
architecture in Figure 2 can be viewed as a generalization of
an autoencoder or a convolutional autoencoder by incorpo-
rating the side information, respectively. In the sequel, we
refer to the architecture (except for the instances selection
component) using an antoencoder for f.(-) and f;(-) as SAN
(Supervised AutoeNcoder), and the one using a convolutional
antoencoder as SCAN (Supervised Convolutional AutoeN-
coder).

Algorithm 1 The Selective Learning Algorithm (SLA)

1: Imput: Data in S, 7 and Z, and parameters \s, A\r, and T';
2: Initialize ®, vs = 1, v; = 0; / All source data are used

3: whilet < T do

4:  Update © via the BP algorithm; // Update the network

5: Update v by Eqs. (4) and (5); // Select “useful” instances
6: t=t+1

7: end while

8:

Output: © and v.

Experiments

In this section, we conduct empirical studies to evaluate the
proposed SLA algorithm from three aspects.? Firstly, we test
the effectiveness of the algorithm when the source domain
and the target domain are distant. Secondly, we visualize
some selected intermediate data to understand how the al-
gorithm works. Thirdly, we evaluate the importance of the
learning order of intermediate instances by comparing the
order generated by SLA with other manually designed orders.

Baseline Methods

Three categories of methods are used as baselines.

Supervised Learning In this category, we choose two su-
pervised learning algorithms, SVM and convolutional neural
networks (CNN) (Krizhevsky, Sutskever, and Hinton 2012),
as baselines. For SVM, we use the linear kernel. For CNN,

2We will use SLA to denote SLA-SAN or SLA-SCAN when
there is no confusion.



we implement a network that is composed of two convolu-
tional layers with kernel size 3 x 3, where each convolutional
layer is followed by a max pooling layer with kernel size
2 x 2, a fully connected layer, and a logistic regression layer.
Transfer Learning In this category, we choose five transfer
learning algorithms including Adaptive SVM (ASVM) (Aytar
and Zisserman 2011), Geodesic Flow Kernel (GFK) (Gong
et al. 2012), Landmark (LAN) (Gong, Grauman, and Sha
2013), Deep Transfer Learning (DTL) (Yosinski et al. 2014),
and Transitive Transfer Learning (TTL) (Tan et al. 2015). For
ASVM, we use all the source domain and target domain la-
beled data to train a target model. For GFK, we first generate
a series of intermediate spaces using all the source domain
and target domain data to learn a new feature space, and
then train a model in the space using all the source domain
and target domain labeled data. For LAN, we first select a
subset of labeled data from the source domain, which has a
similar distribution as the target domain, and then use all the
selected data to facilitate knowledge transfer. For DTL, we
first train a deep model in the source domain, and then train
another deep model for the target domain by reusing the first
several layers of the source model. For TTL, we use all the
source domain, target domain and intermediate domains data
to learn a model.

Self-taught Learning (STL) We apply the autoencoder or
convolutional autoencoder on all the intermediate domains
data to learn a universal feature representation, and then train
a classifier with all the source domain and target domain
labeled data with the new feature representation.

Among the baselines, CNN can receive tensors as inputs,
DTL and STL can receive both vectors and tensors as inputs,
while the other models can only receive vectors as inputs. For
a fair comparison, in experiments, we compare the proposed
SLA-SAN method with SVM, GFK, LAN, ASVM, DTL,
STL and TTL, while compare the SLA-SCAN method with
CNN, DTL and STL. The convolutional autoencoder com-
ponent used in SCAN has the same network structure as the
CNN model, except that the fully connected layer is connect-
ed to two unpooling layers and two deconvolutional layers to
reconstruct inputs. For all deep-learning based models, we
use all the training data for pre-training.

Datasets

The datasets used for experiments include Caltech-256 (Grif-
fin, Holub, and Perona 2007) and Animals with Attributes
(AwA)>. The Caltech-256 dataset is a collection of 30,607
images from 256 object categories, where the number of in-
stances per class varies from 80 to 827. Since we need to
transfer knowledge between distant categories, we choose
a subset of categories including ‘face’, ‘watch’, ‘airplane’,
‘horse’, ‘gorilla’, ‘billiards’ to form the source and target
domains. Specifically, we first randomly choose one cate-
gory to form the source domain, and consider images be-
longing to this category as positive examples for the source
domain. Then we randomly choose another category to form
the target domain, and consider images in this category as

3http: //attributes.kyb.tuebingen.mpg.de/

0.81
0.86 0.85

0.75 0.76
0.8
.78l 0.68
0.79 0.6
0.78 073l
. 0.55
0.72 0.71 0.52

0.74 0.7 l0.69|
[ I s

=

CNN DTL STL SLA SVM DTL GFK LANASVMTTL STL SLA SVM DTL GFK LANASVMTTL STL SLA

(a) Caltech (Tensor) (b) Caltech (SIFT) (c) AwA (SIFT)

Figure 3: Average accuracies of different learning algorithms on the
Caltech-256 and AwA datasets.

positive examples for the target domain. As this dataset has
a clutter category, we sample images from this category as
negative samples for the source and target domains and the
sampling process guarantees that each pair of source and tar-
get domains has no overlapping on negative samples. After
constructing the source domain and the target domain, all the
other images in the dataset are used as the intermediate do-
mains data. Therefore, we construct P2 =230 pairs of DDTL
problems from this dataset.

The AwA dataset consists of 30,475 images of 50 ani-
mals classes, where the number of samples per class varies
from 92 to 1,168. Due to the copyright reason, this dataset
only provides extracted SIFT features for each image in-
stead of the original images. We choose three categories
including ‘humpback+whale’, ‘zebra’ and ‘collie’ to form
the source and target domains. The source-target domains
construction procedure is similar to that on the Caltech-256
dataset, and images in the categories ‘beaver’, ‘blue+whale’,
‘mole’, ‘mouse’, ‘0x’, ‘skunk’, and ‘weasel’ are considered as
negative samples for the source domain and the target domain.
In total we construct P =6 pairs of DDTL problems.

Performance Comparison

In experiments, for each target domain, we randomly sample
6 labeled instances for training, and use the rest for testing.
Each configuration is repeated 10 times. On the Caltech-
256 dataset, we conduct two sets of experiments. The first
experiment uses the original images as inputs to compare
SLA-SCAN with CNN, DTL and STL. The second experi-
ment uses SIFT features extracted from images as inputs to
do a comparison among SLA-SAN and the rest baselines.
On the AwA dataset, since only SIFT features are given, we
compare SLA-SAN with SVM, GFK, LAN, ASVM, DTL,
STL and TTL. The comparison results in terms of average
accuracy are shown in Figure 3. From the results, we can see
that the transfer learning methods such as DTL, GFK, LAN
and ASVM achieve worse performance than CNN or SVM
because the source domain and the target domain have huge
distribution gap, which leads to ‘negative transfer’. TTL does
not work either due to the distribution gap among the source,
intermediate and target domains. STL achieves slightly better
performance than the supervised learning methods. A rea-
son is that the universal feature representation learned from
the intermediate domain data helps the learning of the target
model to some extent. Our proposed SLA method obtains the
best performance under all the settings. We also report the



average accuracy as well as standard deviations of different
methods on some selected tasks in Tables 1 and 2. On these
tasks, we can see that for SLA-SCAN, the improvement in
accuracy over CNN is larger than 10% and sometimes up to
17%. For SLA-SAN, the improvement in accuracy is around
10% over SVM.

Table 1: Accuracies (%) of selected tasks on Catech-256.

CNN DTL STL SLA-scan
‘face-to-horse’ 2+2 672 | T0+3 89 +2
‘horse-to-airplane’ | 82 +2 | 76 =3 | 82+ 2 92 £+ 2
‘gorilla-to-face’ 83£1 | 802 | 82£2 96 + 1

Detailed Results

To understand how the data in intermediate domains can help
connect the source domain and the target domain, in Figure 4,
we show some images from intermediate domains selected
in different iterations of the SLA algorithm on two transfer
learning tasks, ‘face-to-airplane’ and ‘face-to-watch’, on the
Caltech-256 dataset. Given the same source domain ‘face’
and two different target domains ‘airplane’ and ‘watch’, in
Figure 4, we can see that the model selects completely dif-
ferent data points from intermediate domains. It may be not
easy to figure out why those images are iteratively selected
from our perspective. However, intuitively we can find that
at the beginning, the selected images are closer to the source
images such as ‘buddhas’ and ‘football-helmet’ in the two
tasks, respectively, and at the end of the learning process, the
selected images look closer to the target images. Moreover,
in Figure 4, we show that as the iterative learning process pro-
ceeds, the number of positive samples in the source domain
involved decreases and the value of the objective function in
problem (3) decreases as well.

Comparison on Different Learning Orders

As shown in Figure 4, the SLA algorithm can learn an or-
der of useful intermediate data to be added into the learning
process. To compare different orders of intermediate data to
be added into learning, we manually design three ordering
strategies. In the first strategy, denoted by Random, we ran-
domly split intermediate domains data into ten subsets. In
each iteration, we add one subset into the learning process. In
the second strategy, denoted by Category, we first obtain an
order using the SLA algorithm, and then use the additional
category information of the intermediate data to add the inter-
mediate data category by category into the learning process.
Hence the order of the categories is the order they first appear
in the order learned by the SLA algorithm. The third strategy,
denoted by Reverse, is similar to the second one except that
the order of the categories to be added is reversed. In the
experiments, the source domain data are removed in the same
way as the original learning process of the SLA algorithm.
From the results shown in Figure 5, we can see that the three
manually designed strategies obtain much worse accuracy
than SLA. Furthermore, among the three strategies, ‘Cate-
gory’ achieves the best performance, which is because this
order generation is close to that of SLA.

0.86 0.85 0.81
0.81 0.82
0.76
0.71
066 . 0.65
0.62 0.67 = 0.64
- D 1 | Iew

SLA  Random Category Reverse SLA  Random Category Reverse SLA  Random Category Reverse

(a) Caltech (Tensor) (b) Caltech (SIFT) (c) AwA (SIFT)

Figure 5: Comparison results with different learning orders on the
Caltech-256 and AwA datasets.

Conclusion

In this paper, we study the novel DDTL problem, where the
source domain and the target domain are distant, but can
be connected via some intermediate domains. To solve the
DDTL problem, we propose the SLA algorithm to gradual-
ly select unlabeled data from the intermediate domains to
bridge the two distant domains. Experiments conducted on
two benchmark image datasets demonstrate that SLA is able
to achieve state-of-the-art performance in terms of accuracy.
As a future direction, we will extend the proposed algorithm
to handle multiple source domains.

Acknowledgments

We are supported by National Grant Fundamental Research
(973 Program) of China under Project 2014CB340304, Hong
Kong CERG projects 16211214, 16209715 and 16244616,
and Natural Science Foundation of China under Project
61305071. Sinno Jialin Pan thanks the support from the NTU
Singapore Nanyang Assistant Professorship (NAP) grant
M4081532.020. We thank Hao Wang for helpful discussions
and reviewers for their valuable comments.

References

Aytar, Y., and Zisserman, A. 2011. Tabula Rasa: Model
transfer for object category detection. In Proceedings of
IEEFE International Conference on Computer Vision, 2252—
2259.

Bengio, Y. 2009. Learning deep architectures for Al. Foun-
dations and Trends®) in Machine Learning 2(1):1-127.

Blitzer, J.; Crammer, K.; Kulesza, A.; Pereira, F.; and Wort-
man, J. 2008. Learning bounds for domain adaptation. In

Advances in Neural Information Processing Systems 21, 129—
136.

Bryant, P. E., and Trabasso, T. 1971. Transitive inferences
and memory in young children. Nature.

Dai, W.; Yang, Q.; Xue, G.-R.; and Yu, Y. 2007. Boosting for
transfer learning. In Proceedings of the 24th International
Conference on Machine Learning, 193-200.

Gong, B.; Shi, Y.; Sha, F.; and Grauman, K. 2012. Geodesic
flow kernel for unsupervised domain adaptation. In Proceed-
ings of IEEE Conference on Computer Vision and Pattern
Recognition, 2066-2073.



Table 2: Accuracies (%) of selected tasks on Catech-256 and AwA with SIFT features.

SVM DTL GFK LAN | ASVM | TTL STL SLA
‘horse-to-face’ 84+2 | 882 | 77£3 | 79£2 | 76£4 | 7T8+2 | 86+£3 | 92+2
‘airplane-to-gorilla® | 75+ 1 | 624+3 | 67+5 | 664 | 51£2 | 656+£2 | 763 | 84 £2
‘face-to-watch’ THET | 68+3 | 61+4 | 634 | 60£5 | 674 | 75E£5 | 88 +4
‘zebra-to-collie’ 71+3|69+2 | 56+2 | 573 | 59+2 | 70£3 | 72£3 | 76 £2

N
it

Number of Data
- 8 B
Objective Loss
@ 8
g g

2
3

L

0 10 20 30 10 20 30
Number of Iteration Number of Iteration

3

o3

)
=]
8

e
W\ [
@ e
0 10 20 30 10 20 30

Number of Data
b=
Objective Loss
I
2

o
=]
8

Source Domain

some selected intermediate images

Number of positive

Number of lteration Number of Iteration
Target Domain source data

Objective loss

Figure 4: Detailed results: visualization of the selected intermediate data over iterations, the change of the remaining source data size over
iterations, and the change of the objective function value over iterations in two transfer learning tasks: ‘face-to-airplane’ and ‘face-to-watch’.

Gong, B.; Grauman, K.; and Sha, F. 2013. Connecting
the dots with landmarks: Discriminatively learning domain-
invariant features for unsupervised domain adaptation. In
Proceedings of the 30th International Conference on Machine
Learning, 222-230.

Griffin, G.; Holub, A.; and Perona, P. 2007. Caltech-256
object category dataset. Technical Report CNS-TR-2007-001,
California Institute of Technology.

Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Ima-
genet classification with deep convolutional neural networks.
In Advances in Neural Information Processing Systems 25,
1097-1105.

Long, M.; Cao, Y.; Wang, J.; and Jordan, M. I. 2015. Learn-
ing transferable features with deep adaptation networks. In
Proceedings of the 32nd International Conference on Ma-
chine Learning, 97-105.

Mansour, Y.; Mohri, M.; and Rostamizadeh, A. 2009. Do-
main adaptation with multiple sources. In Advances in Neural
Information Processing Systems 22, 1041-1048.

Oquab, M.; Bottou, L.; Laptev, I.; and Sivic, J. 2014. Learn-
ing and transferring mid-level image representations using
convolutional neural networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,
1717-1724.

Pan, S.J., and Yang, Q. 2010. A survey on transfer learning.
IEEE Transactions on Knowledge and Data Engineering
22(10).

Pan, S. J.; Tsang, I. W.; Kwok, J. T.; and Yang, Q. 2011.
Domain adaptation via transfer component analysis. IEEE
Transactions on Neural Networks 22(2):199-210.

Patel, V. M.; Gopalan, R.; Li, R.; and Chellappa, R. 2015.
Visual domain adaptation: A survey of recent advances. IEEE
Signal Processing Magazine 32(3):53-69.

Raina, R.; Battle, A.; Lee, H.; Packer, B.; and Ng, A. Y.
2007. Self-taught learning: transfer learning from unlabeled
data. In Proceedings of the 24th International Conference on
Machine Learning, 759-766.

Rosenstein, M. T.; Marx, Z.; Kaelbling, L. P.; and Dietterich,
T. G. 2005. To transfer or not to transfer. In NIPS Workshop
on Inductive Transfer: 10 Years Later.

Socher, R.; Pennington, J.; Huang, E. H.; Ng, A. Y.; and Man-
ning, C. D. 2011. Semi-supervised recursive autoencoders
for predicting sentiment distributions. In Proceedings of the
2011 Conference on Empirical Methods in Natural Language
Processing, 151-161.

Tan, B.; Zhong, E.; Xiang, E.; and Yang, Q. 2013. Multi-
transfer: Transfer learning with multiple views and multiple
sources. In the 13rd SIAM International Conference on Data
Mining.

Tan, B.; Song, Y.; Zhong, E.; and Yang, Q. 2015. Transitive
transfer learning. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, 1155-1164.

Weston, J.; Ratle, F.; and Collobert, R. 2008. Deep learning
via semi-supervised embedding. In Proceedings of the 25th
International Conference on Machine Learning.

Xie, M.; Jean, N.; Burke, M.; Lobell, D.; and Ermon, S.
2016. Transfer learning from deep features for remote sensing
and poverty mapping. In Proceedings of the 30th AAAI
Conference on Artificial Intelligence.

Yosinski, J.; Clune, J.; Bengio, Y.; and Lipson, H. 2014. How
transferable are features in deep neural networks? In Ad-
vances in Neural Information Processing Systems 27, 3320-
3328.



